
CHAPITRE 2. COMPOSITE SYSTEMS AND ENTANGLEMENT Quantum Physics II

2.5 The Quantum Eraser

The two slit experiment is often the first thought experiment a student encounters when stu-
dying quantum mechanics. Here we will explore some variants to it that highlight the curious
interplay between coherence, interference and entanglement.

Standard two slit experiment (1) : Let us start with the standard two slit experiment. We
suppose that single horizontally polarized photons impinge on a screen with two slits and hit a
second screen placed behind the first (see Fig. 2.1a)). Although the photons hit the screen one
by one we see an interference pattern on the screen behind.

Standard two slit experiment (2) : We now suppose that a 90 degrees polarisation shifter
is placed behind one of the slits (so that the light coming through it now is vertically polarized)
but otherwise leave the set up unchanged (Fig. 2.1b). What happens this time ?

In this case the interference pattern does not arise. Instead we see a simple mixture of the two
patterns we would get if the photons went either through the top or the bottom slit as shown
in Fig. 2.1b. This is because if we measured each photons polarisation then we would be able to
determine if it went through the top or the bottom slit. Even if we do not in fact check which
slit we went through this information is enough to destroy the interference pattern.

Figure 2.1 – Quantum eraser experiments

Here is how to understand this mathematically. Let Â1(x, t) be the wavefunction of a photon
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emerging from the first slit, and Â2(x, t) be that from the second slit. Let the polarisation of a
photon be labelled by a H (horizontal) or V (vertical) substate, so that a horizontally-polarised
photon emerging from the first slit is written as �Â1, H� = �Â1�⊗ �H�. In the original two slit
experiment the state of the photon after going through the two slits is of the form

��(x, t)� =
1
√

2
(�Â1(x, t)�+ �Â2(x, t)�)⊗ �H� (2.2)

and on measuring the position of the particle at the second screen we get the probability density

P (x) = ��(x, t)� (�x��x�⊗ I) ��(x, t)�

=
1
2
(�Â1(x, t)� + �Â2(x, t)�)�x��x�(�Â1(x, t)�+ �Â2(x, t)�)�H �H�

=
1
2
�Â1(x, t) + Â2(x, t)� x��x �Â1(x, t) + Â2(x, t)�

= �Â1(x, t) + Â2(x, t)�
2
�2 .

(2.3)

In the second case the state of the photon after passing through the two slits and the polarization
shifter is of the form

��(x, t)� =
1
√

2
(�Â1(x, t)�⊗ �V �+ �Â2(x, t)�⊗ �H�) (2.4)

and so the probability density function of the photons hitting the screen is

P (x) = ��(x, t)� (�x��x�⊗ I) ��(x, t)�

= �Â1(x, t)� x��x �Â1(x, t)��V �V � + �Â2(x, t)� x��x �Â2(x, t)��H �H�

= (�Â1(x, t)�
2
+ �Â2(x, t)�

2
)�2

(2.5)

That is we have a probabilistic mixture because the cross terms, the interference terms, have
vanished because �H �V � = 0.

Quantum eraser : We now suppose that as well as the 90 degrees polarisation shifter behind
one of the slits we add a polaroid sheet at 45 degrees, which only outputs light in the state
�↗� =

1√
2(�H� + �V �). This is shown in Fig. 2.1c). What happens this time ?

We see the interference pattern again but at half the intensity. Why ? The light coming through
the top slit is vertically polarized and the photons coming through the bottom slit is horizon-
tally polarized. The polaroid sheet e�ectively measures the polarization degree of freedom in the
{�↗� , �↙�} basis where �↗� = 1√

2(�H�+ �V �) and �↙� = 1√
2(�H�− �V �), and only lets through mea-

surement outcomes that project the light to �↗�. Now both H and V photons have a 50% chance
of being measured to be �↗� and so the sheet lets through only half the photons. But crucially
all the photons (both the ones from the upper slit and the lower slit) that get let through are
in the �↗� state and so it’s impossible to determine which slit any photon went through.

Lets see how this looks mathematically. First let’s rewrite the � state in the {�↗� , �↙�} basis,

��(x, t)� =
1
√

2
(�Â1(x, t)�⊗ �V �+ �Â2(x, t)�⊗ �H�)

=
1
2
(�Â1(x, t)�⊗ (�↗�− �↙�) + �Â2(x, t)�⊗ (�↗�+ �↙�))

(2.6)
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After going through the filter the state becomes

��(x, t)
′
� =

1
2
(�Â1(x, t)�⊗ �↗�+ �Â2(x, t)�⊗ �↗�) (2.7)

This is of the same form as Eq. (2.2) except i. we have an extra factor of 1�
√

2 out the front and
ii. all the photons are now in the ↗ polarization state instead of the H state. It follows that the
interference pattern is the same as Eq. (2.3) but with an extra factor of 1�2 out the front. That
is we see the interference pattern but with the intensity reduced by 1/2 as claimed :

P (x) = �Â1(x, t) + Â2(x, t)�
2
�4 . (2.8)

Exercise : What changes if the polaroid sheet only lets through �↙� = 1√
2(�H� − �V �) photons ?

Delayed quantum eraser : Let’s go back to the simple two slit experiment and this time place
an atom behind one of the slits as sketched in Fig. 2.1d). Now this would be hard to arrange
in practise but let us suppose that the photon that passes the atom flips the spin of an outer
electron from �↓� to �↑� but is not absorbed 2. (For each photon that we send through the two slit
experiment we use a new atom and store the previous in a quantum memory). What happens
in this case ?

Concretely, after passing through the two slits and past the atom the system is in the state :

��(x, t)� =
1
√

2
(�Â1(x, t)�⊗ �↑�+ �Â2(x, t)�⊗ �↓�)

=
1
2
(�Â1(x, t)�⊗ (�↗�− �↙�) + �Â2(x, t)�⊗ (�↗�+ �↙�))

(2.9)

Then we can read o� the expected interference patterns in the di�erent cases :
— Measure in the Z basis :

If we obtain �↑� then the pattern is �Â1(x, t)�
2.

If we obtain �↓� then the pattern is �Â2(x, t)�
2.

— Measure in the X basis :

If we obtain �↗� then the interference pattern is 1
2 �Â1(x, t) + Â2(x, t)�

2.
If we obtain �↙� then the interference pattern is 1

2 �Â1(x, t) − Â2(x, t)�
2.

So it would seem that the interference pattern we observe depends on the basis that the atom
is measured in. If the atom is measured in basis {�↑� , �↓�} then we end up with version 2 of the
standard two slit experiment where we know which slit the photon went through. However, if we
measure in the {�↗� , �↙�} basis we end up with the quantum eraser version, and the interference
reappears (but we do not lose half the photons this time).

The interference pattern depends on the basis that the atom is measured in - something we
subjectively choose. And more puzzling still, this is true even if the atoms are taken far away
before being measured ! So a natural thought might be - can we use this to signal ?

[Some blank space to encourage you to think about this before reading the answer]
2. An experiment of this spirit but not of this exact form has been conducted. Take a look at the wikipedia

page on the delayed quantum eraser to learn more.
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2.6 No signalling

Ok, so could we use the delayed eraser setup for a superluminal signal ? On the surface it might
look like we should be able to. Suppose Bob can perform measurements on the atom, and Alice
watches the screen subsequently impacted by photons. They try and signal (Bob is the sender,
Alice is the receiver) using the code that an interference pattern corresponds to the bit ‘0’ and
no interference corresponds to the bit ‘1’. Then, it would seem that Bob could measure Z or
X to send ‘0’ or ‘1’ to Alice and this would be true no matter how far away he is from Alice,
seemingly allowing superluminal signalling. However, if Bob could signal to Alice in this way it
would violate special relativity. So what breaks down ?

Well the key thing to note is that the interference pattern depends on not just the measurement,
but the measurement outcome. Say the atom is measured in the Z basis. Bob will obtain �↑� and
�↓� with equal probabilities (because the photon is equally likely to go through either slits) and
so the resulting pattern on the screen is

p(x) = (�Â1(x, t)�
2
+ �Â2(x, t)�

2
)�2 . (2.10)

Similarly, if Bob measures in the X basis then the states �+� and �−� are obtained with equal
probabilities and so the resulting pattern is

p(x) = (�Â1(x, t) + Â2(x, t)�
2
+ �Â1(x, t) − Â2(x, t)�

2
)�2 = (�Â1(x, t)�

2
+ �Â2(x, t)�

2
)�2 . (2.11)

That is, the pattern is the same in either case !

In order to be able to communicate with this set up Bob would need to tell Alice for each photon
that went through the setup which outcome he obtained. She could then mark the photons
according to the outcome obtained and determine whether or not an interference pattern was
observed for measurement outcomes of the same sort (corresponding to X measurement) or no
interference pattern (corresponding to Z measurement). However, this requires communication
which defeats the purpose of the purported signalling protocol.

Ok, so this quantum erasor protocol doesn’t work. Could another more general protocol work ?
Suppose Alice and Bob each have a qubit of a generic entangled state ��� that they want to
use to try and signal. Suppose Bob considers performing two di�erent measurements upon his
qubit ; M

(B1) which has outcomes corresponding to projectors �(B1)
0 and �(B1)

1 , and M
(B2)

which corresponds to projectors �(B2)
0 and �(B2)

1 . In words : the superscript indicates which
measurement axis he chose, and the subscript indicates what outcome he obtained therefrom.
Bob intends to signal a bit ‘0’ or ‘1’ to Alice via his choice of measurement. Suppose these
measurements collapse Alice’s state as follows :

1. Bob measures M
(B1), obtaining the outcome described by �(B1)

i
:

Alice’s qubit enters state �Âi� with probability pi.
2. Bob measures M

(B2), obtaining the outcome described by �(B2)
i

:
Alice’s qubit enters state �„i� with probability qi.

Then in order for Alice to infer whether Bob measured M
(B1) or M

(B2), she must perform some
measurement M

(A) that, at the very least 3 , has di�erent outcome probabilities depending on

3. What else would be required ? How can Alice determine the probabilities of her measurement outcomes ?
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Bob’s measurement. Let �(A) be the projector of one of her possible measurement outcomes
(it’s not necessary to think about the other outcome). Alice requires that

P (�(A)�M (B1)
) ≠ P (�(A)�M (B2)

) (2.12)
�⇒ �

i

pi �Âi��(A) �Âi� ≠�

i

qi �„i��(A) �„i� . (2.13)

It turns out that it is impossible to find such an operator. That is, for any choice of �(A), the
above expression is a strict equality. It follows that it is impossible to use an entangled state to
communicate faster than the speed of light. For an example of this see this chapter’s problem
sheet. We will also demonstrate this more rigorously when we cover reduced states in a few
lectures time.

2.7 Non-locality and Bell inequalities

In this section we will explore how quantum entanglement can produce correlations that cannot
be explained by classical observers that pre-share classical correlated data/randomness. More
concretely, we will see how Bell’s theorem, and experimental verifications of it, imply that not
only quantum physics but also our world is inherently ‘non-local’. I will start this section with
an unconventional way of framing the Bell’s Theorem that I have shamelessly borrowed from
Terry Rudolph.

2.7.1 Quantum Psychics

Figure 2.2 – The Quantum Psychics Game.

Suppose there were two friends Alice and Bob who claimed to share a psychic connection. How
could you go about testing it ? Let’s put Alice and Bob into isolated rooms with no way they
can pass any messages between them. Outside Alice’s room is a sceptic, let’s call him Spock,
who tosses a coin and tells Alice the outcome. Outside Bob’s room is another sceptic, Kirk, who
similarly tosses a coin and tells Bob the outcome. Alice and Bob must then respond with either
yes ‘Y’ or no ‘N’. What can Spock and Kirk ask Alice and Bob to do to try to determine if they
are psychic ? They consider the following tests...

Test 1 : Every time Alice and Bob get told the same coin outcome they must give the same

answer, every time they get di�erent outcomes they must give di�erent answers.
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This clearly is a flawed test. Alice and Bob can pass it simply by deciding in advance that they
will both say yes to heads and no to tails.

Realising this, the Spock and Kirk instead toy with proposing an alternative test...

Figure 2.3 – The Quantum Psychics Game : Test 1.

Test 2 : Every time Alice and Bob get told the same coin outcome they must give opposite

answers, every time they get di�erent flips they must give the same answers.

On further thought this test is equally flawed. Alice and Bob agree in advance that they will
give di�erent outcomes. That is, Alice says yes to heads and no to tails but Bob does the converse.

Instead the Spock and Kirk propose the following test.

Figure 2.4 – The Quantum Psychics Game : Test 2.

Test 3 : Every time Alice and Bob get told ‘H’ they must give opposite answers, but otherwise

they must give the same answer.

Now if you play around with this you’ll see that there is no strategy that Alice and Bob can
cook up in advance in order to fool the sceptics. Try this ! After playing with a few examples,
the easiest way to definitively prove it to yourself is to represent the binary answers ‘Y’ and ‘N’
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by +1 and -1 respectively. Then the rules of the game can be formalized as trying to find an
assignment of AH , AT , BH and BT such that

AHBH = −1
AHBT = 1
AT BH = 1
AT BT = 1

(2.14)

Multiplying the left hand side of these four equations together gives A
2
H

A
2
T

B
2
H

B
2
T

which has to
be positive. However, multiplying the right hand side together gives −1. Hence there cannot be
an assignment of AH and BH that satisfies all the rules of the test and as such this test is a
viable means to testing if Alice and Bob are psychic.

In fact, the maximum number of rules that can be satisfied in Eq. 2.14 for any strategy taken by
Alice and Bob is 3. (Convince yourself of this !) That is, at best Alice and Bob can pick a strategy
that will lead to them fooling the sceptics for 3 out of the 4 possible coin toss combinations :

Pwin ≤ 3�4 . (2.15)

This is an example of a Bell inequality. If Alice and Bob reliably can win with a probability
significantly greater than 3/4 then it would seem reasonable to assume that they really are ‘psy-
chic’ (by which I mean, there are correlations that cannot be explained by previously decided
classical scheme for correlating their answers).

However, if Alice and Bob share entangled Bell states, �„+� = 1√
2 (�00� + �11�), then they can use

the non-classical correlations stored in the Bell state to pass the sceptics test. Alice and Bob’s
strategy to do so is as follows.

— If Alice gets told ‘H’ she measures in the Z basis and says ‘Y’ if she gets ‘�0�’ and ‘N’ if
she gets ‘�1�’.

— If Alice gets told ‘T’ she measures in the X basis and says ‘Y’ if she gets ‘�+�’ and ‘N’ if
she gets ‘�−�’.

— If Bob gets told ‘H’ he measures in the basis

��h� = sin(fi�8)�0� + cos(fi�8)�1� , �h� = cos(fi�8)�0� − sin(fi�8)�1�� (2.16)

and says ‘Y’ if he gets ‘�h�’ and ‘N’ if she gets ‘�h�’.
— If Bob gets told ‘T’ he measures in the basis

��t� = cos(fi�8)�0� + sin(fi�8)�1� , �t� = sin(fi�8)�0� − cos(fi�8)�1�� (2.17)

and says ‘Y’ if he gets ‘�t�’ and ‘N’ if she gets ‘�t�’.
Alice and Bob can beat test 3 with probability

PQuantum = cos(fi�8)2 = 2 +
√

2
4

≈ 0.854 . (2.18)

Exercise : Check this !

However, crucially this is an intriguing form of telepathy. They can use it to cheat the sceptics
test but (as we saw before and you will see in the problem sheet) they cannot use it to signal. So
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is it useful for anything ? In fact, it proves useful in quantum cryptography (but that is beyond
the remit of this course).

Terry’s quantum psychics version of the Bell inequality is entirely equivalent to a more conven-
tional framing of the Bell’s theorem known as the CHSH inequality. Rather than asking what
is the probability of Alice and Bob winning test 3, the CHSH inequality is a bound on the sum
of the expectation values of the product of Alice and Bob’s answers for each of the di�erent
possible combinations of outcomes. That is, a bound on the correlation coe�cient

C ∶= �AT BT � + �AHBT � + �AT BH� − �AHBH� (2.19)

where AjBk are placeholders for Alice and Bob’s measurement outcomes when told the toss
outcome was j and k respectively. For example, AH and BH are placeholders when they are
both told H and so

�AHBH� = (−1) × P (AH = 1, BH = −1�H, H) + (−1) × P (AH = −1, BH = 1�H, H)

+ (+1) × P (AH = 1, BH = 1�H, H) + (+1) × P (AH = −1, BH = −1�H, H) .
(2.20)

and similarly for the other expectations values. We want to relate this to probability of winning
in test 3,

Pwin =
1
4
�P (AH = 1, BH = −1�H, H) + P (AH = −1, BH = 1�H, H)

P (AH = 1, BT = 1�H, T ) + P (AH = −1, BT = −1�H, T )

P (AT = 1, BH = 1�T, H) + P (AT = −1, BH = −1�T, H)

P (AT = 1, BT = 1�T, T ) + P (AT = −1, BT = −1�T, T )�

(2.21)

To do so, we note that as the probability of the di�erent outcomes have to sum to 1, we can
write �AHBH� as

�AHBH� = 1 − 2(P (AH = 1, BH = −1�H, H) + P (AH = −1, BH = 1�H, H)) . (2.22)

On using a similar trick with the other expectations values, the probability of winning in test 3
is given by

Pwin =
1
8
((1 − �AHBH�) + (1 + �AHBT �) + (1 + �AT BH�) + (1 + �AT BT �)) =

1
2
+

1
8

C . (2.23)

As Pwin ≤ 3�4, it follows that

C = 8�Pwin −
1
2
� ≤ 2 . (2.24)

However for quantum players we have Pquantum =
1
2 +

√
2

4 and so

Cquantum = 2
√

2 . (2.25)
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Figure 2.5 – The CHSH Inequality

2.7.2 More formal derivation (i.e. pinning down exactly what is spooky)

We introduced Bell inequalities above with a thought experiment about testing psychics. This
hopefully helped to give you an intuition about what is so strange about violating a Bell inequa-
lity. Below we present a more formal derivation of the CHSH inequality that helps to pin down
precisely how the correlations of a Bell inequality violating system are di�erent to conventional
classical correlations.

Consider a bipartite system where one part is sent to a LHS measuring device and the other
to a RHS measuring device as sketched in Fig. 2.5. The LHS measuring device has a lever
allowing it to measure either A or A

′. The RHS measuring device can be set to B or B
′. When

a measurement is made the light under either “Yes” or “No” turns on. We are interested in the
correlations between result combinations when measurements are made on the di�erent settings.

Let the probabilities of di�erent result combinations be written as P (l, r�LR) where L and R

are placeholders for the settings of the left and right measuring devices (i.e., L can take values
A or A

′ and R values B and B
′) and l and r are placeholders for the results shown on the LHS

and RHS measuring devices and as such can be either be“yes” or “no”.

Bell inequalities define a correlation coe�cient C as in Eq. (2.30) and then place an upper bound
on possible values this coe�cient can take if you assume “factorisability”. Factorisability is the
statement that the probability of l and r can be written as

p(l, r�LR) = � P (l�L, ⁄)P (r�R, ⁄)P (⁄)d⁄ . (2.26)

What is the significance of the factorisability assumption ? If events x and y are un-
correlated then their joint distribution can be written as P (x, y) = P (x)P (y). Similarly, the
statement : P (x, y�–, —, “) = P (x�–, —, “)P (y�–, —, “) says that the probabilities of x and y are
uncorrelated once you take into account variables –, — and “. Put another way, factors –, — and
“ are su�cient to explain any correlations in the probabilities of x and y. For example, it seems
reasonable to expect that the probability that a pub sells more than 100 ice creams in a day,
P (x), is correlated of the probability that the pub sells more than 1000 pints of cider, P (y),
but these correlations can be explained by taking into account all the various common factors
such as outside temperature (–), day of the week (—), and the number of important sporting
fixtures that day (“). The parameter ⁄ is introduced to incorporate all such common factors 4

4. Note ; ⁄ only includes factors from the events shared histories, it does not include explicit information about

the results of either x or y. My example above would not be factorisable if a pub had a rule that every time 25

ice creams were sold they would toss a coin to decide whether to sell any more ciders that day.
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and giving the original statement of factorisability, Eq. (2.26).

As such, the statement of “factorisability” used to set up the Bell inequality can be understood
as follows. Given ⁄, the probability of the outcome of a particular measurement on the LHS
given that A is measured, is uncorrelated to the probability of a particular result on the RHS,
given that B is measured. That is, ⁄ incorporates all e�ects from the system’s shared history.

In terms of the experimental set up we are considering here ⁄ represents all information concer-
ning the initial state of the system and the experimental equipment before the system is divided
and sent to the di�erent measuring devices. As such, by denying that the joint probability dis-
tribution is factorisable we are denying that the correlations between the individual properties
are explained by the local factors incorporated in ⁄. In this way, denying this form of correlation
amounts to saying that the correlations are inexplicable in terms of local variables.

This idea can be made more precise by considering two necessary conditions for factorisability
to hold.

1. Setting Independence : P (l�L, B, ⁄) = P (l�L, B
′
, ⁄)

The outcome on the LHS does not depend on what measurement is performed on the RHS
and vice versa.

2. Outcome Independence : P (l�A, R, r, ⁄) = P (l, �A, R, r
′
, ⁄)

The outcome of LHS does not depend on the outcome of the outcome of the RHS, except
in so far as them both depend on ⁄.

These two conditions lead to factorisability as follows. Given outcome independence, it makes
sense to talk of individual probability distributions for l and r, and so we can say that

P (l, r�L, R, ⁄) = P (l�L, R, ⁄)P (r�L, R, ⁄) (2.27)

Given setting independence we can further say that

P (l�L, R, ⁄) = P (l�L, ⁄) (2.28)

and similarly for r. It thus follows that

P (l, r�L, R, ⁄) = P (l�L, ⁄)P (r�R, ⁄) (2.29)

which leads directly to the factorizability condition Eq. (2.26). Thus, if a system is not factori-
zable then either outcome independence or setting independence (or both) does not hold.

In addition to factorizability two further implicit, but seemingly very reasonable assumptions,
are required.

1. “Single outcome assumption" : On each run of the experiment only one result is obtained
at each measuring device 5.

2. “No conspiracy assumption” : On each run on the experiment we only obtain results for
one of four possible measurements (A&B, A

′&B, A&B
′, A

′&B
′). We find the probabilities

required to calculate C by averaging out over many runs of the experiment. We need to
assume that bias is not introduced by the measuring technique so that the samples used
to calculate the probabilities are fair.

5. This may seem an odd assumption to explicitly state ; however, it does not hold under the many worlds

interpretation of quantum mechanics.
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Once you have these two definitions the rest of the derivation is basic probability and algebra.
In what follows we present the original derivation by Bell which is slightly more general than
that presented in the psychic section. Specifically, we will aim to bound

C ∶= ��LR� − �LR
′
�� + ��LR� + �L

′
R�� . (2.30)

Using the factorisability condition we have

�LR� = �

l,r=±1
lrP (l, r�L, R) (2.31)

and similarly for the other terms in C.

Théorème 2.7.1. Suppose that ±1 are the only allowed values for l and r. The “outcome

independence”, “setting independence”, “single outcome” and “no conspiracy assumptions” above

imply that

C ≤ 2
for all choices of parameters l, r, l

′
, r
′
.

Démonstration.

For convenience let us implicitly define

�LR� ∶= EL,R(l ⋅ r) ∶= � EL,R(l ⋅ r�⁄)P (⁄)d⁄ = �

l,r=±1
lrP (l, r�L, R)

where EL,R(l ⋅ r) is the expectation value of the product l ⋅ r for a given choice of L and R.
EL,R(l ⋅ r�⁄) represents the same quantity, conditioned on ⁄. Then we have

EL,R(l, r�⁄) = EL(l�⁄)ER(r�⁄) ∀⁄, L, R

from which
C = ��LR� − �LR

′
�� + ��LR� + �L

′
R��

≤ � ��EL(l�⁄)� ⋅ �ER(r�⁄) −ER′(r�⁄)� + �ER(r�⁄)� ⋅ �EL(l�⁄) +EL′(l�⁄)��P (⁄)d⁄

≤ � ��ER(r�⁄) −ER′(r�⁄)� + �EL(l�⁄) +EL′(l�⁄)��P (⁄)d⁄

where the first inequality is taken from

�� f(x)dx� ≤ � �f(x)�dx

and the second one
�E–(l�⁄)� ≤ 1

The proof of the theorem follows from

Lemme 2.7.2. for x, y ∈ R and x, y ∈ [−1, 1] we have �x − y� + �x + y� ≤ 2

Démonstration.

��x − y� + �x + y��
2
= 2x

2
+ 2y

2
+ 2�x2

− y
2
�

=

�
��
�
��
�

4x
2

x
2
> y

2

4y
2

x
2
< y

2

≤ 4
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Bell’s non-locality theorem on its own does not tell us which of setting and outcome independence
is violated quantum mechanics. However, violation of either of those criterions is su�cient to
show that quantum mechanics is in some sense non-local. Bell’s non locality theorem tells us
either that the setting of the other measuring device, or the particular measurement made,
a�ects the measurement on the other electron.

Note that there is nothing to prevent the measurement events at the two di�erent devices from
being spacelike, and so in terms of our current physical theories causally, separated. As such,
either the information concerning the setting of the other measuring device, or result of the
other measurement, is communicated at greater than the speed of light. However the former
would violate the no signalling theorem. Hence we conclude that Quantum Mechanics violates
outcome independence not parameter independence.

The correlation coe�cient is constructed to apply to any physical theory which makes predictions
for the probability of results in any experimental set up of the general structure outlined above. In
particular, the derivation makes no direct appeal to either quantum mechanics or determinism.
Experiments have subsequently confirmed that the CHSH-Bell inequality is violated by our
world. This tells us that any fundamental physical theory for the world we live in (not just
quantum mechanics but also any theory that makes accurate predictions about our world !)
must have non-local features.

2.8 Contextuality

The final quantum property we will discuss in this chapter is contextuality. It is a less discussed
quantum property but nicely completes the set discussed in this chapter so we will cover it in
brief. The best example to get a quick sense of contextuality is the Peres-Mermin (PM) square
introduced by Kochen and Specker.

Here we consider a set of 9 di�erent binary measurements, each of which can give the outcomes
±1. Classically, we see this as being 9 properties of an object that we observe (+1) or do not
observe (-1) in our system. We ask that observables in the same column or row form a context,
or in other words, are jointly measurable.

�
�
�
�
�
�
�

A B C

a b c

– — “

�
�
�
�
�
�
�

Let ABC denote the product of the values obtained from measuring A, B and C. Here, BC

would be the measurement context of A. The observed properties can be probabilistic, so we
define �ABC� = p(ABC = +1)−p(ABC = −1). We then consider (analogously to Bell inequalities)
a correlation coe�cient, this time of the form :

�PM� = �ABC� + �abc� + �–—“� + �Aa–� + �Bb—� − �Cc“� (2.32)

Classically we would expect measurements to be noncontextual. That is, we would expect the
result of an observable to not depend on its context (the other measurements performed). If we
assume our measurements are non-contextual then the maximum value the PM square can take
is 4. In fact,

−4 ≤ �PM� ≤ 4 (2.33)
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To see this note that the only way for the function f to have a value of 6 would be for all the
products in the definition of f to be 1 except for the product cfi to be equal to −1. If the 5 first
terms of the sum are all equals to 1, their product would also be equal to one, leading to :

a
2
b

2
d

2
e

2
g

2
h

2
cfi = 1,

implying that cfi is equal to 1. This proves that f(M) ≤ 4. A similar argument can show that
f(M) ≥ −4.

However, by carefully picking our quantum observables, can show �PM� can exceed 4. Form the
table of quantum observables as follows

�
�
�
�
�
�
�

A B C

a b c

– — “

�
�
�
�
�
�
�

corresponding quantum example→
�
�
�
�
�
�
�

‡z ⊗ I I⊗ ‡z ‡z ⊗ ‡z

I⊗ ‡x ‡x ⊗ I ‡x ⊗ ‡x

‡z ⊗ ‡x ‡x ⊗ ‡z ‡y ⊗ ‡y

�
�
�
�
�
�
�

(2.34)

one can readily check that the columns and rows are made of commuting operators, and that
the products of observables in the same contexts {A, B, C}, ... are the identity except Cc“ = −I.
Thus we have �PM� = 6 which violates Eq. (2.33). Note that this result is input state inde-
pendent ! Any two qubit state (entangled or unentangled) is contextual. It follows that quantum
mechanics is contextual. Broadly contextuality can be understood as stemming from the fact
that observables in quantum mechanics do not commute. (Like Bell’s inequality, violations of
the PM bound have been experimentally verified.)
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